
An Adaptive Difference
Distribution-based Coding with

Hierarchical Tree Structure for DNA
Sequence Compression

Wenrui Dai, Hongkai Xiong
Department of Electronic Engineering

Shanghai Jiaotong University
Shanghai 200240, China

Email: {daiwenrui, xionghongkai}@sjtu.edu.cn

Xiaoqian Jiang, Lucila Ohno-Machado
Division of Biomedical Informatics
University of California, San Diego

San Diego, CA 92093, USA
Email: {x1jiang,lohnomachado}@ucsd.edu

Abstract

Previous reference-based compression on DNA sequences do not fully exploit the intrinsic
statistics by merely concerning the approximate matches. In this paper, an adaptive difference
distribution-based coding framework is proposed by the fragments of nucleotides with a hier-
archical tree structure. To keep the distribution of difference sequence from the reference and
target sequences concentrated, the sub-fragment size and matching offset for predicting are
flexible to the stepped size structure. The matching with approximate repeats in reference will
be imposed with the Hamming-like weighted distance measure function in a local region closed
to the current fragment, such that the accuracy of matching and the overhead of describing
matching offset can be balanced. A well-designed coding scheme will make compact both the
difference sequence and the additional parameters, e.g. sub-fragment size and matching offset.
Experimental results show that the proposed scheme achieves 150% compression improvement
in comparison with the best reference-based compressor GReEn.

I. INTRODUCTION

With the development of high-throughput sequencing technologies, rapid reduction of
sequencing cost enables the research projects centered on individual genomics and person-
alized medicine. The large scale projects such as the 1000 Genomes Project (http://www.
1000genomes.org/) and The Cancer Genome Atlas (http://cancergenome.nih.gov/) have
been contributing to the unprecedented volume of DNA sequences. As pointed out by
Kahn [1], the exponential explosion in genomic data has presented a significant challenge
to the disk storage and high-performance computation. It is crucial for the development
of novel efficient compression techniques to close the reality gap.

DNA sequences are characterized with repeated patterns of four different kinds of
nucleotides, namely Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). General
purpose compression algorithms such as compress, gzip and bzip2 fail to compress DNA
sequences without taking DNA structures into sufficient consideration. Consequently,
a series of specialized compression methods are proposed to focus on the characteris-
tic structures such as approximate repeats (repeats with mutations) and complementary
palindromes (reversed repeats). Inspired by Ziv-Lempel data compression method [2],
Grumbach and Tachi proposed the first specific DNA sequence compressor Biocompress
[3], to compress the exact repeats with the specifically designed Fibonacci coding. The
compression performance was improved in successive literatures by the introduction
of Markov model for non-repeated regions [4], extension to the approximate repeats
for further exploitation of the structures in DNA sequences [5], [6], and utilization of
dynamic programming for optimal detection and matching of approximate repeats [7],

2013 Data Compression Conference

1068-0314/13 $26.00 © 2013 IEEE

DOI 10.1109/DCC.2013.45

371

[8]. Although methods based on approximate repeats show promising results, no theoretic
principles on approximate matching algorithm has been established for such heuristic
methods. Consequently, statistical-based methods were introduced for the intensive pre-
diction of the generation of the nucleotides. [9]–[11] proposed the normalized maximum
likelihood model to determine the best regressor for matching and substitution of variable-
size approximate repeats. XM [12] estimated the probability distribution of symbols by
combining a panel of ”experts” with the repeat expert concerning the approximate repeats.
Finite context models are also proposed and compared to rapidly capture variable-order
statistical information along the DNA sequences [13], [14]. In spite of the evolutionary
development of compression techniques, reference-free methods are subjected to their
low compression rate (not greater than 6:1) and prohibitive computational cost for large
DNA data sets.

Since the significant part of the genome is shared among individuals of the same
species, reference-based compression methods are proposed to utilize such redundancy
for more efficient compression. The idea for storing and reducing redundant genomic data
was firstly based on additional information, e.g. single nucleotide polymorphism (SNP)
databases [15] or insert and delete operations [16]. To eliminate the additional informa-
tion, the RLZ algorithm proposed by Kuruppu et al. [17] performed relative Lempel-Ziv
compression of DNA sequences with the collection of related sequences but could not
handle the sequences with characters outside the alphabet {A, T,G,C,N}. However,
resequencing techniques inevitably introduce additional characters into the alphabet, e.g.
the lower case character {a, t, g, c, n}, to represent the uncertainty at a certain position
in DNA sequences. Wang et al. [18] proposed the general Genome ReSequencing (GRS)
tool for compressing and storing the sequencing data with the reference by considering
the chromosome varied sequence percentage. For the efficient compressive performance
and robust support for arbitrary alphabets, GReEn [19] applied the copy model into the
matching of exact repeats in reference sequences and established probabilistic model for
such matching. GReEn achieved better coding gain when compared to [17] and [18].
The recent trend of reference-based methods implies that matching and representing
repeated patterns with the reference in a probabilistic manner significantly improves the
performance of genome compression techniques. However, these methods cannot fully
exploit the redundancies in the reference-based compression, since the variable sizes and
offsets of repeats and the exception of insertion, deletion and substitution in matching
degrade its efficiency.

In this paper, we propose a novel framework on the fragments of nucleotides with
a hierarchical tree structure for the reference-based genome sequence compression. In
each fragment, the sub-fragment size and matching offset for predicting are flexible to
the stepped size structure. The matching with approximate repeats in reference would be
imposed with the Hamming-like weighted distance measure function in a local region
closed to the current fragment, such that the accuracy of matching and the overhead of rep-
resenting matching offset can be balanced. Specifically, the distribution of the difference
sequence from the reference and target sequences is kept concentrated and consequently
suitable for compression. Finally, a well-designed coding scheme will make compact
both the difference sequence and the additional parameters, e.g. sub-fragment size and
matching offset. The proposed method is robust in dealing with arbitrary alphabets for the
case in which the alphabet is not constrained to {A, T,G,C} due to a low resequencing
quality. Experimental results show 150% compression improvement in comparison with
the best reference-based compressor GReEn.

The rest of this paper is organized as follows. Section II presents the proposed frame-
work, which includes the construction of Hamming-like distance measure function as

372

�������	
�����������

����
�����
�	
������

��������	
�������������
����������
��������������	������������ !

"�

��#�
����
���
������
���
��

����$�#%�
������&

'�

���������

����$�#%�
�������
�����'(��)��*$+,%��#-��
�

.�

��������	�- /

���
����

����
������
�
������0�����	���������0�
�
��������1��������

����

�������

���2�������
���
������	��
�
����������	���������
�������������

��������	

��������1�

!�����������
������
������0�����	����������
�����
��������1�

.�

��������	�
�
����
��	���/

������
��	�����

����
���������������

"�

'�

Fig. 1. The flowing diagram for the proposed framework

well as the well-designed coding scheme. The reference-based experimental results on
two assemblies of human genome are evaluated in Section III. Section IV draws the
conclusion and makes the discussion.

II. THE PROPOSED FRAMEWORK

A. Adaptive Difference Distribution-based Coding Framework
This section presents the proposed framework for the adaptive compression of dif-

ference between reference sequence and the encoding sequence. The introduction of
difference sequence is due to the fact that DNA sequences are characterized with ap-
proximately repeated patterns with exception of single insertion, deletion and substitution.
The distribution of the obtained difference sequences is not uniform, and only several
symbols appear in a high frequency, as witnessed in Fig. 2-4.

The generic genome compression framework based on the difference sequence is de-
picted in Fig. 1. The sequence for compression is segmented into fragments of nucleotides
with size MAX FRAG SIZE, such that the sequence is predicted individually based on
each fragment. A hierarchical tree structure with MAX TREE DEPTH is constructed
for each fragment. The fragment can be divided into sub-parts by iteratively halving
its size according to the hierarchical tree. The introduction of hierarchical structure of
halving sub-parts rather than fragments with arbitrary sizes is to maintain a compact
alphabet of fragment sizes for coding. For example, if MAX FRAG SIZE is 256 and
MAX TREE DEPTH is 6, the sub-fragment size SF SIZE ∈ {256, 128, 64, 32, 16, 8}.

373

.���*.**�....�..

.���*�������.�..

����
����

*�
���
343333333333!3!3!333!3!3!3333333

�� !�+�/5

6���!*�+�3

�����
����

Fig. 2. An example for the proposed framework. The fragment of 16 nucleotides is predicted based on the reference.
The difference fragment is obtained by subtracting the selected reference from the target.

�.*�.�.��..�.*

�.*�.��.��..�.*

����
����

*�
���
34333333333333333333333333333333

�� !�+�7

6���!*�
+�3

�����
����

6���!*�
+�/

�� !�+�7

Fig. 3. An example for the proposed framework. The fragment of 16 nucleotides is predicted based on two sub-
fragment of 8 nucleotides in reference. The difference fragment is obtained by subtracting the selected reference from
the target.

Under such settings, the approximate repeats in the genome sequence can be flexibly
predicted by adaptively switching to the proper sub-fragment size.

The prediction of each fragment is obtained by subtracting the most similar subse-
quences of nucleotides in the reference. Differences can be obtained directly by compar-
ing the ASCII values of corresponding symbols in the reference and target sequences.
Fig. 2 gives an example, where a sub-fragment of 16 nucleotides in target sequence
is predicted by subtracting the corresponding one in reference. It is obvious that the
target sequence can be reconstructed from the difference sequence with the additional
parameter SF OFFSET = 0 and SF SIZE = 16. These two parameters are also required
in the decoder.

The combination of sub-fragments in reference sequence that differ from the current
fragment in shortest distance are sought in prediction. Fig. 3 shows an example for
selecting two sub-fragments of 8 nucleotides as the reference for the fragments of 16 nu-
cleotides. Commonly, such searching is constrained in the local region around the position
of current sub-fragment, since emerging long offset will consume large amount of bits
in coding even though it might obtain better matching. When given the MAX OFFSET
for searching, the matching offset SF OFFSET could be {0,±1, · · · ,±MAX OFFSET}.
Denote Fn the current sub-fragment for predicting and F̂n the one matching Fn in the
reference sequence, the coding cost J (Fn) can be formulated as

JFn

(
Fn, F̂n, PARAM

)
= J

(
Fn − F̂n

)
+ J (PARAM) , (1)

where PARAM = {SF SIZE(Fn), SF OFFSET(Fn)} is the parameter set indicating cur-
rent sub-fragment size and matching offset. Consequently, the reference-based prediction

374

�����

������

������

������

������

	�����

�����

������

������

�����

�������

�� �� �����

����

(a) Distribution of difference for chromosome
Chr1

�����

������

������

������

������

	�����

�����

������

������

�����

�������

�� �� �����

����

(b) Distribution of difference for chromosome ChrX

Fig. 4. Distribution of difference in YH human genome with reference KOREF 20090224

is to find the best matching of current sub-fragment that achieves{
F̂ ∗
n , PARAM∗

}
= arg min

F̂n,PARAM

JFn

(
Fn, F̂n, PARAM

)
. (2)

The best matching can be found by traversing all possible settings of the parameter
set PARAM. Theoretically, the cost function indicating the empirical entropy, J (·) =
− log2 P (·), is expected to achieve the least code length. However, under such cost
function, it is hard to find the concurrent optimized solution for all the sub-fragments in
iterative hierarchical tree structure. For the efficient estimate of coding cost, the Hamming-
like distance measurement is introduced.

B. Distance Measurement
In this subsection, the Hamming-like distance measurement is introduced. As men-

tioned above, since the main part of the genome is shared among individuals of the
same species, the difference between the encoding sequence and reference sequence
tends to be long uniform string with the emergence of unexpected symbols. These
unexpected symbols are hard to be predicted accurately because of their low probabilities
of appearance. Consequently, it needs much more bits to represent these unexpected
symbols in the compressed files, which may be greater than their raw lengths. As a
result, the Hamming-like distance can approximately estimate the coding cost for the
obtained difference sequence.

Denote Fn = {xi}mi=1 and F̂n = {x̂i}mi=1 the sub-fragment for encoding and its
corresponding reference respectively. When xi equals its corresponding nucleotide x̂i

in reference, the Hamming distance Hamm (xi, x̂i) is set to zero. If xi does not equal x̂i,
the Hamming distance is increased to represent the difference. However, the difference in
cases of the nucleotides (e.g. ’a’ and ’A’, ’g’ and ’G’, and etc.) contributes to the majority
of obtained differences. As shown in Fig. 2, the difference between 16 nucleotides is
10 ’00’ and 6 ’E0’ (0xE0 indicates the difference between lower case and upper case
of the same character in ASCII). The results in Fig. 4 demonstrate the fact that zero
difference and the difference between the upper and the lower case of same nucleotides
commit almost all the distribution of difference symbols. Thus, a set of weights of
Hamming distance are assigned to the various difference by approximately comparing
their frequencies shown in Fig. 4.

Hamm (xi, x̂i) =

⎧⎪⎨
⎪⎩

0 xi = x̂i

1 ‖xi − x̂i‖ = 0xE0

50 otherwise

(3)

375

TABLE I
CONTEXT CONSTRUCTION BASED ON PREDICTED SUB-FRAGMENT SIZE AND MODE OFFSET

S1 = S2 S = P ({S1, S2, · · · , Sn}) O = P ({O1, · · · , On})
S1 �= S2, O1 �= O2 S = S1 O = P ({O2, · · · , On})
S1 �= S2, O1 = O2 S = S1 O = P ({O3, · · · , On})

The weight for all the other difference is large enough such that it will not affect the
detection of exact match and difference in cases. Eq. 3 implies that the difference sequence
is formulated as the long uniform string of 0 or 0xE0 with the others appearing as the
unexpected symbols. Consequently, the Hamming distance between two sub-fragment is
defined as

Hamm
(
Fn, F̂n

)
=

m∑
i=1

Hamm (xi, x̂i) .

C. Coding of Difference Sequence
The distribution of difference sequence is suitable for the high-efficiency compression,

as shown in the histograms in Fig. 4(a) and (b). A switching structure is proposed for
the coding of difference sequence. The switching coding structure proposes run length
coding for the fragments with same values and the textual compressor PPM [20] as the
routine encoder. To be concrete, the general purpose textual compression tool PPMDj is
adopted for the common coding of difference sequence, which is consistent in coding
by making the code length independent of the appearance order of the context symbols.
The concentrated distribution of difference sequence is suitable for the symbol-based
compressor. In addition, run length coding is developed for the fragments of difference
with unique values, e.g. 0 or 0xE0. Such fragments are indicated with symbol ”00FF”
and ”E0FF” for the brief representation in the coding scheme. The switching structure
will decrease the coding cost by fitting the statistics of various regions in the difference
sequence.

D. Corporative Coding of Parameter Sets
The parameter sets are required for the reconstruction of the encoding DNA se-

quence from the difference sequence. Its parameters include the size and matching
offset for each predicted sub-fragment. They are stored in the unit of sub-fragment
with MIN FRAG SIZE. Compression of these two sets of parameters is not isolated.
Each set of parameters can be taken as the context for encoding the other. Denote
{S1, S2, · · · , Sn} and {O1, O2, · · · , On} the predicted sub-fragment size and matching
offset. The contexts for predicting current size S and offset O are constructed in Table I,
where n is the maximum context order. Based on above context models, the parameter
sets are compressed with the arithmetic coder.

III. EXPERIMENTAL RESULTS

In this section, the proposed method is evaluated by comparing with the benchmark
reference-based compressor GReEn [19] and GRS [18], among which GReEn is the best
reference-based compressor for FASTA format genomic data. Two assemblies of human
genome, YH and KOREF 20090224 were compressed based on the reference sequences
for validation. All experimental results were obtained using an Intel Core i7-3620QM
CPU laptop computer at 2.2 GHz with 8 GB of memory and VC++ 9.0 compiler.

The implementation of the proposed method can be referred to Algorithm 1. In this
implementation, MAX FRAG SIZE and MIN FRAG SIZE were set to 256 and 8 re-
spectively. The maximum depth for hierarchical tree was 6 and the maximum matching

376

Algorithm 1 Proposed scheme for adaptive difference-based compression framework
1: Segment the input chromosome file into fragments with MAX FRAG SIZE = 256 and

MAX DEPTH = 6.

2: for All fragments do
3: Initialize Depth = MAX DEPTH and SF SIZE = MAX FRAG SIZE.

4: while Depth > 1 do
5: NUM PART = 2.

6: for All possible matching offset SF OFFSET do
7: Compare current (sub)fragment with the reference with SF OFFSET and SF SIZE.

8: Compute the Hamming-like distance as defined in II.B and store the minimal one.

9: end for
10: if Current distance is minimal then
11: Subtract reference from current (sub)fragment with corresponding SF OFFSET and SF SIZE.

12: Store current difference sequence, current distance, SF OFFSET and SF SIZE.

13: end if
14: Divide current (sub)fragment into NUM PART sub-parts.

15: for All NUM PART sub-parts do
16: Compare current sub-part with the reference.

17: Compute the Hamming-like distance as defined in II.B and store the minimal one.

18: Obtain the corresponding optimal difference sequence, SF OFFSET and SF SIZE.

19: end for
20: Obtain the total distance for the NUM PART sub-parts.

21: Compare two distances and decided the optimal difference sequence, SF OFFSET and SF SIZE.

22: end while
23: Encode difference fragment, matching offset and fragment size

24: end for

TABLE II
PERFORMANCE OF THE PROPOSED METHOD IN COMPRESSING THE SEQUENCE KOREF 20090224 USING

KOREF 20090131 AS THE REFERENCE

Chr
Raw file Proposed scheme GReEn GRS

(byte) Byte Ratio Byte Ratio Byte Ratio
1 247249719 450642 548.7 1225767 201.7 1336626 185.0
2 242951149 448789 541.3 1272105 191.0 1354059 179.4
3 199501827 346616 575.6 971527 205.3 1011124 197.3
4 191273063 378619 505.2 1074357 178.0 1139225 167.9
5 180857866 328193 551.1 947378 190.9 988070 183.0
6 170899992 308719 553.6 865448 197.5 906116 188.6
7 158821424 345454 459.7 998482 159.1 1096646 144.8
8 146274826 261982 558.3 729362 200.6 764313 191.4
9 140273252 286168 490.2 773716 181.3 864222 162.3
10 135374737 257389 526.0 717305 188.7 768364 176.2
11 134452384 252522 532.4 716301 187.7 755708 177.9
12 132349534 239887 551.7 668455 198.0 702040 188.5
13 114142980 183914 620.6 490888 232.5 520598 219.3
14 106368585 171257 621.1 451018 235.8 484791 219.4
15 100338915 168867 594.2 453301 221.4 496215 202.2
16 88827254 182593 486.5 510254 174.1 567989 156.4
17 78774742 162958 483.4 464324 169.7 505979 155.7
18 76117153 137162 554.9 378420 201.1 408529 186.3
19 63811651 134458 474.6 369388 172.7 399807 159.6
20 62435964 101199 617.0 266562 234.2 282628 220.9
21 46944323 78570 597.5 203036 231.2 226549 207.2
22 49691432 88596 560.9 230049 216.0 262443 189.3
M 16571 67 247.3 127 130.5 183 90.6
X 154913754 935464 165.6 2712153 57.1 3231776 47.9
Y 57772954 165553 349.0 481037 120.0 592791 97.5
Total 3080436051 6415638 480.1 17971030 171.4 19666791 156.6

The size of compressed file (in bytes) and compression ratio of the proposed scheme, GReEn and GRS are shown
respectively. The compression ratio is obtained by raw file size/compressed file size.

377

TABLE III
PERFORMANCE OF THE PROPOSED METHOD IN COMPRESSING THE SEQUENCE YH USING KOREF 20090224 AS

THE REFERENCE

Chr
Raw file Proposed scheme GReEn GRS

(byte) Byte Ratio Byte Ratio Byte Ratio
1 247249719 965165 256.2 2349124 105.3 - -
2 242951149 956853 253.9 2420007 100.4 - -
3 199501827 781239 255.4 1730477 115.3 17410946 11.5
4 191273063 824032 232.1 1877056 101.9 - -
5 180857866 727139 248.7 1792278 100.9 - -
6 170899992 720526 237.2 1588739 107.6 25815446 6.6
7 158821424 714796 222.2 1820425 87.2 - -
8 146274826 594668 246.0 1358770 107.7 - -
9 140273252 572769 244.9 1476495 95.0 - -
10 135374737 562035 240.9 1353193 100.0 - -
11 134452384 564596 238.1 1274433 105.5 - -
12 132349534 538248 245.9 1174966 112.6 16136610 8.2
13 114142980 396867 287.6 866266 131.8 11227954 10.2
14 106368585 382754 277.9 826672 128.7 - -
15 100338915 355867 282.0 892429 112.4 - -
16 88827254 378642 234.6 1015246 87.5 - -
17 78774742 323710 243.3 864710 91.1 - -
18 76117153 316497 240.5 713787 106.6 13187892 5.8
19 63811651 272346 234.3 589422 108.3 - -
20 62435964 246879 252.9 493404 126.5 8409776 7.4
21 46944323 181559 258.6 374383 125.4 726269 64.6
22 49691432 191302 260.0 444932 111.7 - -
M 16571 139 119.2 127 130.5 321 51.6
X 154913754 863394 179.4 3258188 47.5 - -
Y 57772954 180713 319.7 859688 67.2 - -
Total 3080436051 12612735 244.2 31415217 98.1 - -

The size of compressed file (in bytes) and compression ratio of the proposed scheme, GReEn and GRS are shown
respectively. The compression ratio is obtained by raw file size/compressed file size.

offset for approximate repeats was 32. These settings can be further tuned for optimal
performance, although they are already qualified to validate our method in this paper. The
proposed method was implemented iteratively, where at each depth of hierarchical tree,
the sub-fragments were divided into NUM PART = 2 subparts. The hierarchical tree
can be stored in memory as the proposed method is based on fragment of nucleotides
with constrained size MAX FRAG SIZE. Consequently, the difference sequence was
obtained by subtracting the combination of variable size sub-fragments based on the
optimal matching in reference sequence within the constrained local region.

Table II shows the compression results for the KOREF 20090224 human genome using
the KOREF 20090131 as reference. In Table II, the proposed method gives consistently
better results compared to GReEn and GRS. The proposed method achieves a 480 folds
compression ratio in average, which is 1.5 times better than what GReEn achieves. Since
KOREF 20090224 and KOREF 20090131 are the various versions of the same ethnic
group, there are massive similar repeats between the two sequences which leads to the
high efficiency compression.

Besides that, an additional investigate for compression human genome assemblies
is made. Table III displays the compression results for the YH human genome using
KOREF 20090224 as reference. YH and KOREF 20090224 are both the individual
genome based on resequencing data from massively parallel sequencing technologies.
However, they are different in some extent as they are from different ethnic groups. Table
III shows that GRS fails to compress most of the sequences because of the excessive
difference between the reference and target sequences. The proposed method outperforms
GReEn with the exception of chromosome ChrM. An average 150% improvement in

378

compression ratio is witnessed. The reason for the less effective performance of the
proposed method in ChrM is probably because ChrM is relatively small and the overhead
led by the size and mode offset of sub-fragment outrides the gain in compression.

The experiments on the assemblies of human genome demonstrate that the proposed
method provides the efficient and robust support for the genome compression (with
reference) at the presence of large gaps and arbitrary alphabets.

IV. CONCLUSION AND DISCUSSION

Recognizing the insufficient exploitation of statistics of DNA sequences in the reference-
based compressor, an adaptive difference distribution-based coding framework for DNA
sequence is proposed. Exploiting the characteristic structures of approximate repeats
in DNA sequences, difference sequences obtained from the reference and target se-
quences commit a more concentrated probabilistic distribution of symbols for coding. The
weighted Hamming-like distance measurement in a local region is imposed is imposed
to match the approximate repeats and formulate the difference sequences. The size and
matching offset of the sub-fragments for prediction are determined by a hierarchical tree
structure in the fragment of nucleotides. A well-designed coding scheme compresses
both the difference sequence and the additional parameters, e.g. sub-fragment size and
matching offset. Experimental results shows that the proposed scheme achieve 150%
compression improvement in comparison with the benchmark compressor GReEn and
GRS.

The introduction of difference distribution-based coding framework in DNA sequence
compression is meaningful, since it could be an alternative way to exploit the specific
DNA structures. Distinguished from explicit methods that find and encipher optimal
matching for approximate repeats, the proposed framework implicitly extracts difference
sequences from reference and target sequences for a more concentrated probabilistic
distribution of symbols for coding. This framework reduces the excess overhead led
by exception of insertion, deletion and substitution in matching repeats. Such adaptive
hierarchical coding framework can be further improved with sophisticated coding of
difference sequences and efficient prediction of size and matching offset of the sub-
fragments, e.g. sliding window with dynamic decision of size for obtaining difference
sequences, suffix tree for maintaining the hierarchical coding structure, and etc.

ACKNOWLEDGEMENT

The work has been partially supported by the NSFC, under Grants U1201255, 61271218,
61271211, and 61228101. X. Jiang and L. Ohno-Machado were funded in part by EDM
Forum grant U13HS19564, AHRQ grant R01HS019913 and NIH grants K99LM011392,
R01LM009520, U54HL108460, and UL1TR000100.

REFERENCES

[1] S. Kahn, ”On the future of genomic data,” Science (Washington), vol. 331, no. 6018, pp. 728-729, Feb. 2011.
[2] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate coding,” IEEE Trans. Inf. Theory,

vol. 24, no. 5, pp. 530-536, Sep. 1978.
[3] S. Grumbach and F. Tahi, “Compression of DNA sequences,” in Proc. Data Compression Conf., Snowbird, Utah,

USA, Mar. 1993, pp. 340-350.
[4] S. Grumbach and F. Tahi, “A new challenge for compression algorithms: Genetic sequences,” J. Inf. Process.

Manage., vol. 30, no. 6, pp. 876-887, Nov. 1994.
[5] X. Chen, S. Kwong, and M. Li, “A compression algorithm for DNA sequences,” IEEE Eng. Med. Biol. Mag.,

vol. 20, no. 4, pp. 61-66, Jul. 2001.
[6] X. Chen, M. Li, B. Ma, and J. Tromp, “DNACompress: fast and effective DNA sequence compression,”

Bioinformatics, vol. 18, no. 12, pp. 1696-1698, Dec. 2002.
[7] T. Matsumoto, K. Sadakane, and H. Imai, “Biological Sequence Compression Algorithms,” Genome Informatics,

vol. 11, pp. 43-52, Dec. 2000.

379

[8] B. Behzadi and F. Le Fessant, “DNA compression challenge revisited: A dynamic programming approach,”
Combinatorial Pattern Matching, vol. 3537, pp. 85-96, Jun. 2005.

[9] I. Tabus, G. Korodi, and J. Rissanen, “DNA sequence compression using the normalized maximum likelihood
model for discrete regression,” in Proc. Data Compression Conf., Snowbird, Utah, Mar. 2003, pp. 253-262.

[10] G. Korodi, I. Tabus, J. Rissanen, and J. Astola, “DNA sequence compression - Based on the normalized maximum
likelihood model,” IEEE Signal Process. Mag., vol. 24, no. 1, pp. 47-53, Jan. 2007.

[11] G. Korodi, and I. Tabus, “Normalized maximum likelihood model of order-1 for the compression of DNA
sequences,” In Proc. Data Compression Conf., Snowbird, Utah, USA, Mar. 2007, pp. 33-42.

[12] M. D. Cao, T. I. Dix, L. Allison, and C. Mears, “A simple statistical algorithm for biological sequence
compression,” in Proc. Data Compression Conf., Snowbird, Utah, USA, Mar. 2007, pp. 43-52.

[13] A. J. Pinho, A. Neves, C. Bastos, and P. Ferreira, “DNA coding using finite-context models and arithmetic
coding,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Process., Taipei, Apr. 2009, pp. 1693-1696.

[14] D. Pratas and A. Pinho, “Compressing the human genome using exclusively Markov models,” 5th Int. Conf. on
Practical Applications of Comput. Biol. Bioinformatics (PACBB 2011), Mar. 2011, pp. 213-220.

[15] S. Christley, Y. Lu, C. Li, and X. Xie, “Human genomes as email attachments,” Bioinformatics, vol. 25, no. 2,
pp. 274-275, Jan. 2009.

[16] M. C. Brandon, D. C. Wallace, and P. Baldi, “Data structures and compression algorithms for genomic sequence
data,” Bioinformatics, vol. 25, no. 14, pp. 1731-1738, Jul. 2009.

[17] S. Kuruppu, S. Puglisi, and J. Zobel, “Relative Lempel-Ziv compression of genomes for large-scale storage and
retrieval,” String Process. and Inf. Retrieval, vol. 6393, pp. 201-206, Oct. 2010.

[18] C. Wang and D. Zhang, “A novel compression tool for efficient storage of genome resequencing data,” Nucleic
Acids Res., vol. 39, no. 7, e45, Apr. 2011.

[19] A. Pinho, D. Pratas, and S. Garcia, “GReEn: A tool for efficient compression of genome resequencing data,”
Nucleic Acids Res., vol. 40, no. 4, e27, Feb. 2012.

[20] J. G. Cleary and I. H. Witten, “Data compression using adaptive coding and partial string matching”, IEEE Trans.
Communication, vol. 32, no. 4, pp. 396-402, Apr. 1984.

380

